[image:]
Spring Semester 2021
CSE463M-563M: Digital Integrated Circuit Design and Architecture
Simplified Data Encryption Standard Algorithm

Data Encryption has been very important part of data security for a long time. From financial services, to military products and everything in between all require some kind of data encryption and everybody wants a bullet proof type of data encryption.

One of the important Data Encryption algorithms was Data Encryption Standard (DES) which was developed at IBM in the early 1970. National Security Agency (NSA) selected slightly modified version of DES algorithm as an official Federal Information Processing Standard (FIPS) for the USA in 1977.

DES algorithm had widespread academic scrutiny thru its usage and in January of 1999, distributed.net and Electronic Frontier Foundation publicly proved that they can break a DES key in 22 hours and 15 minutes. Therefore DES was replaced by the Advanced Encryption Standard (AES).

To learn some basic design structures of encryption algorithms we will study Simplified DES algorithm which is a good starting points for undergraduate engineering students to learn some basics of encryption algorithms design.

First we will learn how the Simplified DES algorithm works using binary mathematics. Then we will write a simple piece of code that will show how the Simplified DES algorithm works. Finally we will design an integrated chip that will also show how the Simplified DES algorithm works in hardware.

Simplified DES algorithm example is shown here. This is example was borrowed from a college Security algorithms class and it can be googled easily.

[bookmark: _GoBack]
[image:]
[image:]
[image:]

SBoxes used in this example are:

SBox_1 for the left 4-bits b1, b2, b3, b4 (circled twice in red)

b2 b3 b2 b3 b2 b3 b2 b3

b1
b4

b1
b4

b1
b4

b1
b4

	
	0
	0
	0
	1
	1
	0
	1
	1

	0
	0
	0
	1
	1

	0
	1
	0
	1
	0

	0
	1
	1
	0
	0

	1
	1
	0
	1
	0

	1
	0
	1
	0
	1

	0
	0
	0
	1
	1

	1
	1
	0
	1
	1

	1
	1
	1
	1
	0

SBox_2 for the right 4-bits b1, b2, b3, b4 (circled twice in green)

b2 b3 b2 b3 b2 b3 b2 b3

b1
b4

b1
b4

b1
b4

b1
b4

	
	0
	0
	0
	1
	1
	0
	1
	1

	0
	0
	0
	1
	1

	0
	0
	1
	0
	1

	0
	1
	0
	0
	1

	1
	0
	0
	1
	1

	1
	1
	0
	0
	0

	0
	1
	0
	1
	0

	1
	1
	0
	0
	1

	1
	0
	1
	0
	1

image1.png
/ashington University in St.Louis

McKelvey School of Engineering

image2.png
Simplified DES

1 Introduction

In this lab we will work through a simplified version of the DES algorithm. The algorithm is not crypto-

graphically secure, but its operations are similar enough to the DES operation to give a better feeling for
how it works.

We will proceed by reading the Simplified DES algorithm description in the Stallings section. We will
then work through a full example in class.

2 Full Example

Let the plaintext be the string 0010 1000. Let the 10 bit key be 1100011110,

2.1 Key Generation

The keys k1 and k; are derived using the functions P10, Shift, and PS.
P10 is defined as follows:

P10
952 7 41010 8 6

P8 is defined to be as follows:

P8
637485 100
The first key k1 is therefore equal to
EiL#12345\678910\
K[1 1 00 0[1 L [1 0
PIOK) 0 0 1 1 0]0 1 1 1 1
Shift(PIO(K)) 0 1 1 0 01 1 1 1 0
PE(Shift(PI0(K))) 1 1 1 0 10 0 1
The second key k is derived in a similar manner:
Bit#[1 2 3 4 5[6 7 8 0 10]
K[T 1 000[111T10]|
PIOK) 0 0 1 1 0/0 1 1 1 1
Shift*(PI0(K)) [1 0 0 0 1,1 1 0 1 1
P8(Shift3(PI0(K) [1 0 1 0 0[1 1 1

So we have the two keys k1 = {1110 1001} and k = {1010 0111}

2.2 Initial and Final Permutation

The plaintext undergoes an initial permutation when it enters the encryption function, IP. It undergoes a
reverse final permutation at the end IP~1.
The function I P is defined as follows:

image3.png
[26 371 485 7

i3

The function 7P~ is defined as follows:

TP

413657286

Applied to the input, we have the following after the initial permutation:

Bit#|1 2 3 4[5 6 7 8]
P[0 0 1 0[1

IP(P) [0 0 1 00

2.3
.

Functions fx, SW, K
‘The function f s defined as follows. Let P = (L, R), then f (L, R) = (L & F(R,SK), R).
The function SW just switches the two halves of the plaintext, so SW(L, R) > (R, L)

The function F(p, k) takes a four bit string p and eight bit key k and produces a four bit output. It
performs the following steps.

1. First it runs an expansion permutation £/P:
T et
4 1 2 32038 &4
2. Then it XORs the key with the result of the £/P function
3. Then it substitutes the two halves based on the S-Boxes.

4. Finally, the output from the S-Boxes undergoes the P4 permutatio

Applying the functions, we must perform the following steps: TP~ o fic, o SW o fi, o IP.

1

We have already caleulated IP(P) = {0010 0010}. Applying the next functions:

fx(L.R) = f1110 1001 (0010 0010) = (0010 & F(0010, {1110 1001}),0010)
F(0010, {1110 1001}) = P40 SBozes o {1110 1001} & (E/P(0010))
The steps are:
Bit#[1 2 3 4]5 6 7 8]
R[0 0 10
E/PR) 0 0 0 1 0 1 0 0
k(1 11 0]1 001
E/PR)@k |1 1 1 1[1 1 0 1
SBoxes(E/P(R)@ky) |1 0 0 0
*4(Sboxes(E/P(R)dk:)) [0 0 0 1
The result from F is therefore 0001
Caleulating we then have fi, (L, R) = (0010 & 0001,0010) = (0011,0010)
So far, then L = 0011 and R = 0010. SW just swaps them so R = 0011 and L = 0010.
‘We now do the caleulation of fi, (L. B) = f{i010 0111} (0010 0011) = (0010 F(0011, {1010 0111},0011))

image4.png
9. The steps for F are as above:

Bit# |1 2 3 4[5 6 7 8]
R0 0 1 1
EPR) (1 0 0 10 1
By |1 0 1 00 1 1 1
E/PR)@k, [0 0 1 1,0 01
SBoxes(E/P(R)&ky) |1 0 1 0
PA(Sboxes(E/P(R)ék2) [0 0 1 1

10. So now we have the outcome of F as 0011
11. Caleulating we then have fi, (L, R) = (0010 & 0011,0011) = (0001,0011)

12, Last, we perform the 7P~ permutation:

Bit# |1 2 3 4]5 6 7 8

L]0 00 1(00 1 1
IPTYRL)[1 0 0 01 0 1 0

13. So the final result of the encryption is 1000 1010.

